Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube

نویسندگان

  • Etienne de Klerk
  • Monique Laurent
چکیده

We consider the problem of minimizing a polynomial on the hypercube [0, 1] and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmüdgen [26]. The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates on the hypercube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Semidefinite Programming Problems with General Nonlinear Parameter Dependence: Application of the DC-Representations

Two conservative approaches are proposed to a semidefinite programming problem nonlinearly dependent on uncertain parameters. These approaches are applicable to general nonlinear parameter dependence not necessarily polynomial or rational. They are based on a mild assumption that the parameter dependence is expressed as the difference of two convex functions. The first approach uses constant bo...

متن کامل

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators

We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints in th...

متن کامل

A New Look at Nonnegativity on Closed Sets and Polynomial Optimization

We first show that a continuous function f is nonnegative on a closed set K ⊆ Rn if and only if (countably many) moment matrices of some signed measure dν = fdμ with suppμ = K, are all positive semidefinite (if K is compact μ is an arbitrary finite Borel measure with suppμ = K). In particular, we obtain a convergent explicit hierarchy of semidefinite (outer) approximations with no lifting, of t...

متن کامل

Interval Enclosures of Upper Bounds of Roundoff Errors using Semidefinite Programming

A longstanding problem related to floating-point implementation of numerical programs is to provide efficient yet precise analysis of output errors. We present a framework to compute lower bounds of absolute roundoff errors for numerical programs implementing polynomial functions with box constrained input variables. Our study relies on semidefinite programming (SDP) relaxations and is compleme...

متن کامل

Lower Bounds for a Polynomial on a Basic Closed Semialgebraic Set Using Geometric Programming

Let f, g1, . . . , gm be elements of the polynomial ring R[x1, . . . , xn]. The paper deals with the general problem of computing a lower bound for f on the subset of Rn defined by the inequalities gi ≥ 0, i = 1, . . . ,m. The paper shows that there is an algorithm for computing such a lower bound, based on geometric programming, which applies in a large number of cases. For example, the algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010